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Abstract 

This paper attempts to study how curvature rigorously,    function f differentiable on (a, b) is called X concave 

up (or convex) if f ′ is increasing on (a, b); X concave down (or concave) if f ′ is decreasing on (a, b).  Sign of the 

derivative tells us whether a function is increasing or decreasing; for example, when f′(x)>0f′(x)>0, f(x)f(x) is 

increasing. The sign of the second derivative f′′(x)f″(x) tells us whether f′f′ is increasing or decreasing; we have seen 

that if f′f′ is zero and increasing at a point then there is a local minimum at the point, and if f′f′ is zero and decreasing 

at a point then there is a local maximum at the point. Thus, we extracted information about ff from information 

about f′′f″. 

To get information from the sign of f′′f″ even when f′f′ is not zero. Suppose that f′′(a)>0f″(a)>0. This means 

that near x=ax=a, f′f′ is increasing. If f′(a)>0f′(a)>0, this means that ff slopes up and is getting steeper; 

if f′(a)<0f′(a)<0, this means that ff slopes down and is getting less steep.  A curve that is shaped like this is 

called concave up. knowing where it is concave up and concave down helps us to get a more accurate picture. Of 

particular interest are points at which the concavity changes from up to down or down to up; such points are 

called inflection points. If the concavity changes from up to down at x=ax=a, f′′f″ changes from positive to the left 

of aa to negative to the right of aa, and usually f′′(a)=0f″(a)=0. To identify such points by first finding 

where f′′(x)f″(x) is zero and then checking to see whether f′′(x)f″(x) does in fact go from positive to negative or 

negative to positive at these points. Note that it is possible that f′′(a)=0f″(a)=0 but the concavity is the same on both 

sides. The intervals of concavity can be found in the same way used to determine the intervals of increase/decrease, 

except that we use the second derivative instead of the first. In particular, since $(f')'=f''$, the intervals of 

increase/decrease for the first derivative will determine the concavity of $f$. Take the number line showing 

subcritical numbers and intervals of concavity from the process above.  The points (s,f(s)) where the concavity 

changes are inflection points.  Thus  not all subcritical numbers will yield inflection points (just like not all critical 

numbers yield local extrema). 
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Introduction 

A point of inflection of the graph of a function ff is a point where the second derivative f′′f″ is 00. We have to wait a 

minute to clarify the geometric meaning of this. 

A piece of the graph of ff is concave upward if the curve ‘bends’ upward. For example, the popular 

parabola y=x2y=x2 is concave upward in its entirety. 
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A piece of the graph of ff is concave downward if the curve ‘bends’ downward. For example, a ‘flipped’ 

version y=−x2y=−x2 of the popular parabola is concave downward in its entirety. 

 

An asymptote is a line or curve that approaches a given curve arbitrarily closely, as illustrated in the above diagram. 

 

The plot above shows , which has a vertical asymptote at  and a horizontal asymptote at . 

 

The relation of points of inflection to intervals where the curve is concave up or down is exactly the same as the 

relation of critical points to intervals where the function is increasing or decreasing. That is, the points of inflection 

mark the boundaries of the two different sort of behavior. Further, only one sample value of f′′f″ need be taken 

between each pair of consecutive inflection points in order to see whether the curve bends up or down along that 

interval. 

Expressing this as a systematic procedure: to find the intervals along which ff is concave upward and concave 

downward: 

 Compute the second derivative f′′f″ of ff, and solve the equation f′′(x)=0f″(x)=0 for xx to find all the 

inflection points, which we list in order as x1<x2<…<xnx1<x2<…<xn. (Any points of discontinuity, etc., 

should be added to the list!) 

 We need some auxiliary points: To the left of the leftmost inflection point x1x1 pick any convenient 

point toto, between each pair of consecutive inflection points xi,xi+1xi,xi+1 choose any convenient point titi, 

and to the right of the rightmost inflection point xnxn choose a convenient point tntn. 

 Evaluate the second derivative f′′f″ at all the auxiliary points titi. 

 Conclusion: if f′′(ti+1)>0f″(ti+1)>0, then ff is concave upward on (xi,xi+1)(xi,xi+1), while 

if f′′(ti+1)<0f″(ti+1)<0, then ff is concave downward on that interval. 
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 Conclusion: on the ‘outside’ interval (−∞,xo)(−∞,xo), the function ff is concave 

upward if f′′(to)>0f″(to)>0 and is concave downward if f′′(to)<0f″(to)<0. Similarly, on (xn,∞)(xn,∞), the 

function ff is concave upward if f′′(tn)>0f″(tn)>0 and is concave downward if f′′(tn)<0f″(tn)<0. 

 

Objective: 

This paper intends to explore and analyze an inflection point, a point on a smooth plane curve at which 

the curvature changes sign. In particular, in the case of the graph of a function, it is a point where the function changes 

from being concave (concave downward) to convex (concave upward), or vice versa. 

inflection point 

 

 

An inflection point is a point on a curve at which the sign of the curvature (i.e., the concavity) changes. Inflection 

points may be stationary points, but are not local maxima or local minima. For example, for the curve  plotted 

above, the point  is an inflection point. 

The first derivative test can sometimes distinguish inflection points from extrema for differentiable functions . 

The second derivative test is also useful. A necessary condition for  to be an inflection point is . 

A sufficient condition requires  and  to have opposite signs in the neighborhood of  (Bronshtein 

and Semendyayev 2004, p. 231). 

 

For the graph of a function of differentiability class C2 (f, its first derivative f', and its second derivative f'', exist and 

are continuous), the condition f'' = 0 can also be used to find an inflection point since a point of f'' = 0 must be passed 

to change f'' from a positive value (concave upward) to a negative value (concave downward) or vise versa as f'' is 

continuous; an inflection point of the curve is where f'' = 0 and changes its sign at the point (from positive to negative 

or from negative to positive).[1] A point where the second derivative vanishes but does not change its sign is 

sometimes called a point of undulation or undulation point. 
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In algebraic geometry an inflection point is defined slightly more generally, as a regular point where the tangent 

meets the curve to order at least 3, and an undulation point or hyperflex is defined as a point where the tangent meets 

the curve to order at least 4. 

For a function f, if its second derivative f″(x) exists at x0 and x0 is an inflection point for f, then f″(x0) = 0, but this 

condition is not sufficient for having a point of inflection, even if derivatives of any order exist. In this case, one also 

needs the lowest-order (above the second) non-zero derivative to be of odd order (third, fifth, etc.). If the lowest-

order non-zero derivative is of even order, the point is not a point of inflection, but an undulation point. However, in 

algebraic geometry, both inflection points and undulation points are usually called inflection points. An example of 

an undulation point is x = 0 for the function f given by f(x) = x4. 

In the preceding assertions, it is assumed that f has some higher-order non-zero derivative at x, which is not 

necessarily the case. If it is the case, the condition that the first nonzero derivative has an odd order implies that the 

sign of f'(x) is the same on either side of x in a neighborhood of x. If this sign is positive, the point is a rising point of 

inflection; if it is negative, the point is a falling point of inflection. 

Inflection points sufficient conditions: 

1) A sufficient existence condition for a point of inflection in the case that f(x) is k times continuously differentiable 

in a certain neighborhood of a point x0 with k odd and k ≥ 3, is that f(n)(x0) = 0 for n = 2, …, k − 1 and f(k)(x0) ≠ 0. 

Then f(x) has a point of inflection at x0. 

2) Another more general sufficient existence condition requires f″(x0 + ε) and f″(x0 − ε) to have opposite signs in the 

neighborhood of x0 (Bronshtein and Semendyayev 2004, p. 231). 

 

Points of inflection can also be categorized according to whether f'(x) is zero or nonzero. 

 if f'(x) is zero, the point is a stationary point of inflection 

 if f'(x) is not zero, the point is a non-stationary point of inflection 

A stationary point of inflection is not a local extremum. More generally, in the context of functions of several real 

variables, a stationary point that is not a local extremum is called a saddle point. 

An example of a stationary point of inflection is the point (0, 0) on the graph of y = x3. The tangent is the x-axis, 

which cuts the graph at this point. 

An example of a non-stationary point of inflection is the point (0, 0) on the graph of y = x3 + ax, for any nonzero a. 

The tangent at the origin is the line y = ax, which cuts the graph at this point 

Some functions change concavity without having points of inflection. Instead, they can change concavity around 

vertical asymptotes or discontinuities. For example, the function  is concave for negative x and convex for 

positive x, but it has no points of inflection because 0 is not in the domain of the function. 
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Functions with inflection points whose second derivative does not vanish   

Some continuous functions have an inflection point even though the second derivative is never 0. For example, the 

cube root function is concave upward when x is negative, and concave downward when x is positive, but has no 

derivatives of any order at the origin. 

Suppose  is a function of  that is twice differentiable at a stationary point . 

1. If , then  has a local minimum at . 

2. If , then  has a local maximum at . 

The extremum test gives slightly more general conditions under which a function with  is a maximum or 

minimum. 

If  is a two-dimensional function that has a local extremum at a point  and has continuous partial 

derivatives at this point, then  and . The second partial derivatives test classifies the point 

as a local maximum or local minimum. 

Define the second derivative test discriminant as 

  
 

(1) 

  

 

(2) 

Then 

1. If  and , the point is a local minimum. 

2. If  and , the point is a local maximum. 

3. If , the point is a saddle point. 

4. If , higher order tests must be used 

 

 

Suppose  is continuous at a stationary point . 

1. If  on an open interval extending left from  and  on an open interval extending right from , 

then  has a local maximum (possibly a global maximum) at . 
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2. If  on an open interval extending left from  and  on an open interval extending right from , 

then  has a local minimum (possibly a global minimum) at . 

3. If  has the same sign on an open interval extending left from  and on an open interval extending right 

from , then  has an inflection point at . 

the normal curvature is 0 in the direction  for all  in the domain of . The differential equation for the parametric 

representation of an asymptotic curve is 

 

(1) 

where , , and  are coefficients of the second fundamental form. The differential equation for asymptotic curves 

on a Monge patch  is 

 

(2) 

and on a polar patch  is 

 

(3) 

The images below show asymptotic curves for the elliptic helicoid, funnel, hyperbolic paraboloid, and monkey 

saddle. 

 

 

 

Conclusion 

 derivative test uses the derivatives of a function to locate the critical points of a function and determine whether each 

point is a local maximum, a local minimum, or a saddle point. Derivative tests can also give information about the 

concavity of a function.The first-derivative test examines a function's monotonic properties (where the function is 

increasing or decreasing), focusing on a particular point in its domain. If the function "switches" from increasing to 

decreasing at the point, then the function will achieve a highest value at that point. Similarly, if the function 

"switches" from decreasing to increasing at the point, then it will achieve a least value at that point. If the function 

fails to "switch" and remains increasing or remains decreasing, then no highest or least value is achieved. One can 

examine a function's monotonicity without calculus. However, calculus is usually helpful because there are sufficient 

conditions that guarantee the monotonicity properties above, and these conditions apply to the vast majority of 
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functions one would encounter. Stated precisely, suppose that f is a continuous real-valued function of a real variable, 

defined on some open interval containing the point x. 

 If there exists a positive number r > 0 such that f is weakly increasing on (x − r, x] and weakly decreasing on 

[x, x + r), then f has a local maximum at x. This statement also works the other way around, if x is a local 

maximum point, then f is weakly increasing on (x − r, x] and weakly decreasing on [x, x + r). 

 If there exists a positive number r > 0 such that f is strictly increasing on (x − r, x] and strictly increasing on 

[x, x + r), then f is strictly increasing on (x − r, x + r) and does not have a local maximum or minimum at x. 

This statement is a direct consequence of how local extrema are defined. That is, if x0 is a local maximum point, then 

there exists r > 0 such that f(x) ≤ f(x0) for x in (x0 − r, x0 + r), which means that f has to increase from x0 − r to x0 

and has to decrease from x0 to x0 + r because f is continuous. In the first two cases, f is not required to be strictly 

increasing or strictly decreasing to the left or right of x, while in the last two cases, f is required to be strictly increasing 

or strictly decreasing. The reason is that in the definition of local maximum and minimum, the inequality is not 

required to be strict: e.g. every value of a constant function is considered both a local maximum and a local minimum. 
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